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Abstract

In Europe, the energy renovation of the existing building stock is a great 
opportunity to significantly reduce energy consumption and greenhouse 
gas (GHG) emissions and reach the European sustainability targets. In 
this framework, building energy simulations (BES) tools are very use-
ful in verifying energy retrofit measures’ effectiveness and compliance 
with national standards. However, an inaccurate numerical prediction, 
the so-called “performance gap” between measured and numerical per-
formance, is often obtained, mainly due to the inherent uncertainty of 
model input. Due to its stochastic nature, the occupants’ behavior (OB) 
is considered among the key contributors to this gap. However, the most 
recent Building Energy Model (BEM) approaches adopt deterministic 
hourly-defined profiles for characterizing OB, thus neglecting the related 
uncertainty. In this work, the impact of OB uncertainties on energy con-
sumption (EC) prediction is evaluated by adopting a Karhunen-Loève 
Expansion sampling technique, used to randomly perturb OB profiles 
such as heating setpoint (HS), internal thermal loads (IL), and windows 
opening (NV). Two BEMs of a typical Italian residential building in 
pre- and post-renovation scenarios are considered and calibrated on real 
EC data. The results demonstrated that HS uncertainty has the highest 
impact on EC in all scenarios. Moreover, the higher the energy perfor-
mance of the building, the higher the impact of OB, especially for IL and 
NV patterns.

Keywords

Occupants’ behavior, Uncertainty analysis, Natural ventilation, Internal 
loads, Heating setpoint.
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© Authors 2023. CC BY 4.0 License.

BUILDING ENERGY CONSUMPTION UNDER 
OCCUPANTS’ BEHAVIOR UNCERTAINTY IN 
PRE AND POST-RENOVATION SCENARIOS: 
A CASE STUDY IN ITALY

DOI: 10.30682/tema0901g

Gianluca Maracchini, Elisa Di Giuseppe

1. INTRODUCTION

In the European Union, 40% of the overall EU energy 
consumption (EC) and about 35% of the total greenhouse 
gas (GHG) emissions are attributable to the building sec-
tor. This is mainly due to the low energy performance of 
most of the building stock [1–3], which uses half of this 
energy for heating households [4]. In the next ten years, 
the energy demand is expected to increase by more than 

20% [5]. Thence, improving the energy performance of 
these buildings represents an urgent need and opportu-
nity to significantly reduce the European EC and GHG 
emissions and reach the European sustainability and en-
ergy efficiency targets.

In this framework, building energy simulations (BES) 
are generally used by practitioners to identify the best 
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uncertainty that can be present in a know, experimentally 
inferred, OB. 

In a common application, indeed, the OB can be 
qualitatively known since inferred from occupants’ 
interviews. However, this investigation method leads 
to OBs’ patterns characterized by a degree of uncer-
tainty that may affect the reliability of the EC pre-
diction. To consider this uncertainty, O’Neill and Niu 
proposed an interesting approach based on applying 
a Karhunen-Loève expansion (KLE) sampling tech-
nique [7], which allowed them to consider the spatial 
and temporal uncertainties of a known OB pattern in 
BES. In particular, they applied this procedure to a US 
DOE prototype BEM for modeling the uncertainty of 
occupants’ presence, lighting, heating, and cooling set-
point patterns. However, a very small range of uncer-
tainty of OB (a Coefficient of Variation, CV, of about 
3.76%) was assumed, while the uncertainty related to 
some very important OB, such as windows opening, 
was neglected [14]. As a result, they found an impact of 
OB uncertainties on heating consumption of about 4%. 
Moreover, they conclude that a higher input parameter 
variation should be used to provide more insights into 
the impact of different behavior patterns on energy con-
sumption. However, applying this procedure to real res-
idential buildings, calibrated simulations, and window 
openings is still rare in the literature.

This paper presents an application of the KLE tech-
nique to a real, multi-family building in the Italian 
Marche region (Ancona). A BEM is purposely created 
and calibrated on observed monthly energy consumption 
to increase the reliability of the numerical outcomes. 
Since the impact of OB on EC may vary the buildings’ 
energy performance levels, both pre (calibrated) and 
post-energy retrofit scenarios are considered. For each 
renovation scenario, three uncertainty analyses (UA) are 
carried out by applying the KLE technique to internal 
loads (IL), heating setpoint (HS), and window opening 
(NV) patterns. To provide more insights into the impact 
of different behavior patterns on energy consumption, a 
higher input parameter variation than that adopted in [7] 
is considered. In this way, the robustness of EC predic-
tion related to the three different OB pattern uncertainty 
is examined.

energy retrofit strategy and to verify its compliance with 
the requirements set by the National Standards. Still, a 
discrepancy between the experimental and numerical en-
ergy performance called the “energy performance gap” 
can be found for both new and existing buildings, reach-
ing values up to 250%. This discrepancy can be traced 
back to the difficulty in obtaining the exact values of 
all the thousands of inputs needed for characterizing a 
Building Energy Model (BEM). 

Among them, those needed to represent the actual oc-
cupants’ behavior and interaction with building systems 
(OB) are generally the most difficult to be defined. This is 
mainly due to the stochastic nature of the occupants’ be-
havior, especially in residential buildings. Several stud-
ies found the occupants’ behavior (OB) to be the main 
responsible for the energy performance gap in residential 
buildings [6, 7]. Indeed, different occupants’ interactions 
with thermostats, electric appliances, lighting, domestic 
hot water appliances, and windows may produce a huge 
difference in building energy consumption, which can be 
higher or lower than that forecasted by a building energy 
model (BEM).

Modeling OB can ease the understanding of occu-
pants’ impact on building energy use. The more recent 
Building Energy Performance Simulation (BEPS) tools 
(e.g. [8]), however, model the OB through deterministic 
hourly-defined profiles, neglecting the OB’s stochastic 
nature. While simple and easy to understand, this ap-
proach does not consider the OB uncertainties, leading to 
evaluating the energy performance of one of the possible 
scenarios, which can greatly differ from reality.

The increasing power of the actual computer makes 
it feasible to conduct parametric BEPS in a reasonable 
time frame with thousands of simulations and stochastic 
inputs. As a result, over the past 20 years, the impact of 
OB uncertainty on building energy use has aroused in-
creasing interest in the research field, where several stud-
ies concerning parametric analyses [9, 10] and stochastic 
OB models [6, 7, 11–13] have been carried out. How-
ever, most of these works regard office buildings, while 
just a few of them focus on residential ones. Moreover, 
these works mainly investigate the impact of OB on EC 
by comparing the results obtained through different OB 
(see e.g. [6]), while few of them consider the inherent 
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280.8 m2 (Fig. 1a). Each floor has three dwellings ex-
cept for the first floor, which is unheated and below the 
ground level, and the second and the last floors, which 
have one and two dwellings, respectively. 

For the aim of this study, the dwelling highlighted in 
Fig. 1b, belonging to the third story, was selected for cal-
ibration and UA. The flat consists of two bedrooms, a 
bathroom, a kitchen, and a living room, and is occupied 
by three persons, i.e., a couple with one son. The overall 
area of the apartment is about 80 m2.

2.3. NUMERICAL MODELING OF PRE- AND POST-
RENOVATION SCENARIOS

The building described in Section 2.2 has been mod-
eled through the DesignBuilder ver. 6.1 [16], which is 
a graphical interface of the EnergyPlus software (see 
Fig. 2a). The Conduction Transfer Functions (CTF) have 
been used as heat balance algorithm, while TRAP and 
DOE-2 as surface convection algorithm for inside and 
outside convection, respectively. An IdealLoadsAirSys-
tem model was adopted to compute the HVAC heating 
energy demand with an infinite heating capacity, and 
an HVAC Coefficient of Performance (CoP) was used 
to calculate the heating energy consumption from ener-
gy demand [17]. Model inputs, such as thermophysical 

2. PHASES, MATERIALS, AND METHODS

2.1. PHASES

This work can be subdivided into the following three 
main phases:

•	 firstly, a BEM of a real residential building is cre-
ated and enriched through information about OB 
collected through questionnaires;

•	 then, to increase the reliability of the numerical 
results, the BEM is calibrated to real EC data;

•	 finally, UAs on OB in both pre and post-retrofit 
scenarios are performed, having the twofold aim 
of estimating the impact of OB uncertainties on 
EC before and after energy renovation, and eval-
uating the energy prediction robustness to OB un-
certainty. 

2.2. CASE STUDY

A typical Italian multi-family building built between 
1970 and 1975 and placed in the hot-summer Mediter-
ranean climate of Ancona, Italy (Csa climatic zone ac-
cording to Köppen climate classification [15]) has been 
selected in this study. The building consists of six sto-
ries and 12 dwellings, with a floor area for each story of 

Fig. 1. (a) Overview of the six-story multi-family building; (b) plan of the third floor with highlighted the case study apartment used for numerical 
simulations.
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ing area and one in the living area. Then, according to 
occupants’ information, two different heating activa-
tion profiles were considered, which were multiplied 
by a different HS. Finally, the NV schedules reported 
in Fig. 2d indicate the time when the occupants open 
the windows to ventilate the apartment. According to 
the ASHRAE book of fundamentals [8, 21], the result-
ing flow rate from windows is then computed through a 
superposition process as the combined effect of the air-
flow driven by wind (QW) and the airflow due to stack 
effects (QS). In particular:

	 𝑄𝑄𝑊𝑊 = 𝐶𝐶𝑊𝑊𝐴𝐴0𝑉𝑉  1 � (1)

	 𝑄𝑄𝑆𝑆 	= 	𝐶𝐶𝐷𝐷𝐴𝐴0	)2𝑔𝑔ℎ|𝑇𝑇𝑍𝑍 − 𝑇𝑇𝑂𝑂|/𝑇𝑇𝑍𝑍  1 � (2)

where CW is the opening effectiveness computed as 
reported in Eq. 3 [8, 21]; A0 is the opening area of win-
dows, which is unknown and then will be defined in the 
calibration phase (a range between 10 and 100% of the 
total opening area is assumed, see Tab. 1); V is the ex-
ternal wind speed; CD is the discharge coefficient equal 
to 0.4 + 0.0045|TZ-TO|; g is the standard gravity; h is the 
height from the midpoint of the lower opening to the 
neutral pressure level; TZ and TO are the internal and ex-
ternal air dry-bulb temperatures, respectively.

	 𝐶𝐶𝑊𝑊 = 	0.55 − 0.25|𝐴𝐴𝑛𝑛𝑔𝑔𝑙𝑙𝑒𝑒	𝑑𝑑𝑖𝑖𝑓𝑓𝑓𝑓𝑒𝑒𝑟𝑟𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒|/180	  1 � (3)

characteristics of opaque and transparent components, 
CoP, and infiltration rate, as well as some OB-related in-
puts, such as maximum internal thermal loads, have been 
initially estimated from a detailed energy audit, occu-
pants’ interview, and literature. Due to the uncertainties 
in these data, a uniform range of variation has been de-
fined for each relevant property instead of a determinis-
tic value, as summarized in Table 1. These ranges define 
the search space for the calibration process described in 
Section 2.4. 

Concerning the post-renovation scenario, all the con-
struction elements and heating systems are considered to 
be upgraded according to the Italian Law on buildings’ 
energy performance [18], significantly improving the 
thermal performance of the entire building. The deter-
ministic input values considered for the post-renovation 
scenarios are summarised in Table 1. 

The patterns related to the interactions between oc-
cupants and building systems, i.e., ILs, HS, and NV, 
have been inferred from questionnaires submitted to 
the occupants. The obtained information has been then 
translated into the estimated daily profiles shown in 
Fig. 2b, c and d. These data have been used as a starting 
point for BEM calibration (Section 2.4) and UA (Sec-
tion 2.5). Concerning the ILs, the pattern in Fig. 2a is 
multiplied by a maximum value to obtain the related 
hourly value of ILs, whose range of variation is indicat-
ed in Table 1 [19, 20]. Regarding the HS, two different 
thermostats are in the apartment, i.e., one in the sleep-

Tab. 1. Uniform probability distributions of BEM properties in the pre-renovation scenario and deterministic values in post-renovation scenarios. 
SHGC: Solar Heat Gain Coefficient; CoP: Coefficient of Performance of the space heating system.
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An automated calibration tool purposely developed 
by the authors and based on Artificial Intelligence opti-
mization algorithms has been used to perform the BEM 
calibration. In particular, the Non-dominated Sorting 
Genetic Algorithm (NSGA-II) has been implemented 
for the optimization process, which is one of the most 
used and efficient for automatic BEM calibration [24]. 
The tool automatically searches the set of input data that 
minimizes the error between simulated and measured 
time-series data, given a search space defined by the in-
put ranges of variation. 

Two error functions can be used for assessing the 
error, i.e., the Coefficient of Variation of the root mean 
square error (CVRMSE) and the Normalized Mean Bias 
Error (NMBE). According to the ASHRAE guideline 14 
[23], a model is considered calibrated on monthly energy 
consumption when the CVRMSE and NMBE are below 
or within specific thresholds, equal to 15% and ±5%, re-
spectively [23].

2.4. MODEL CALIBRATION

BEMs generally provide inaccurate numerical predic-
tions if not calibrated or validated on real data [22]. 
Despite this, uncalibrated BEMs are often used in the 
literature to address the impact of OB on EC [7, 11]. To 
increase the accuracy of the numerical predictions, the 
developed BEM has been calibrated against monthly en-
ergy consumption in this study, as requested by relevant 
international Standards on BEM calibration [23]. The 
selected baseline period for data collection and simula-
tion goes from the 1st of November 2016 to the 24th of 
March 2017, corresponding to the period during which 
Italian national authorities allow space heating in Anco-
na, Italy, i.e., where the building is located. During this 
period, weather data such as the outdoor air temperature, 
relative humidity, horizontal global solar radiation, wind 
velocity, and direction were collected through a weather 
station placed 1 km away from the building. 

Fig. 2. (a) BEM of the residential building; (b) OB’s patterns for internal gains; (c) OB’s patterns for heating; (d) OB’s patterns for natural ventilation 
inferred from occupants’ questionnaires.
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average equal to zero. The most used types of correlation 
functions are Gaussian, exponential, or turbulent func-
tions [26]. In this study, the following exponential cova-
riance function is adopted:

	 𝐶𝐶(𝑥𝑥1, 𝑥𝑥2) = 𝑐𝑐	𝑒𝑒−-
𝑥𝑥1−𝑥𝑥2

5 /
2

  1 � (5)

where c is a variance scaling parameter correspond-
ing to the Coefficient of Variation (CoV) of each nor-
mally distributed hourly value. A different value of c has 
been adopted for the different OB patterns. Being ILs 
and NV characterized by high uncertainty, a high val-
ue of c, equal to 20%, has been assumed in these cases. 
Conversely, a smaller c value (2.5%) has been consid-
ered for the HS-UA to have plausible values for hour-
ly HS, corresponding to a maximum deviation of ±1°C 
from the calibrated value.

Assuming that μx(t) is equal to 0, the KLE is used 
in this work to obtain 1000 sets of 24 “hourly” random 
coefficients, as shown in Fig. 3a. The sample dimension 
is chosen to ensure the convergence of the UA result. 
These coefficients are then used for computing 1000 new 
hourly patterns for each UA according to the following 
formulation:

	 𝑋𝑋∗(𝑡𝑡) = 𝑋𝑋(𝑡𝑡) ∙ (1 + 𝑥𝑥(𝑡𝑡),  1 � (6)

where X(t) is the estimated OB pattern, while the 
X*(t) represents the perturbed one. In Fig. 3b, the 1000 
patterns obtained for the IL are plotted as an example.

2.5. UNCERTAINTY ANALYSES

Three distinct “local” uncertainty analyses (UAs) have 
been carried out on the pre-renovation and post-renova-
tion scenarios to evaluate the impact of OB uncertainties 
on building EC and then the robustness of the calibrated 
BEM energy prediction to OB. Each UA concerns the 
variation of one of the estimated OB patterns shown in 
Fig. 2b, c, and d, i.e., the internal load pattern (IL-UA), 
the heating setpoint pattern (HS-UA), and the natural 
ventilation pattern (NV-UA), respectively. The pattern 
variation is obtained by adopting the Karhunen-Loève 
expansion (KLE) sampling technique, which has been 
successfully used in the literature to evaluate the impact 
of OB on EC [7, 25]. 

Similar to the Fourier analysis, a KLE allows repre-
senting a stochastic process as an infinite linear weighted 
combination of orthogonal functions, reducing its di-
mension by converting time-dependent uncertainty into 
time-independent stochastic parameters. In practice, the 
KLE represents a stochastic process x(t) through the fol-
lowing equation:

	 𝑥𝑥(𝑡𝑡) = 𝜇𝜇𝑥𝑥(𝑡𝑡) + ∑ )𝜆𝜆𝑖𝑖𝜓𝜓𝑖𝑖(𝑡𝑡)𝑦𝑦𝑖𝑖∞
𝑖𝑖=1    1 � (4)

where μx(t) is the mean value at the time t, ψi(t) is a 
temporal basis function, and λi and yi are the eigenvalues 
and eigenfunctions of the covariance function C(x1, x2). 
In particular, yi is a time-independent stochastic parame-
ter expressed as Gaussian variables characterized by an 

Fig. 3. (a) 1000 realizations of the KLE; (b) exemplary application of the KLE technique on the internal thermal loads’ estimated profile.
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able EC prediction in both pre and post-renovation sce-
narios since it represents the actual energy performance 
of the building [23]. Since observed data are obtained 
from energy bills and predicted data (from calibrated 
simulations) are deterministic values, it should be not-
ed that measurement accuracy and confidence interval 
of numerical predictions cannot be determined in this 
case.

3.2. UNCERTAINTY ANALYSIS IN THE 
PRE-RENOVATION SCENARIO

Starting from the calibrated BEM, a KLE-based UA has 
been carried out for each considered occupants-related 
profile, i.e., internal loads (IL-UA), heating setpoint (HS-
UA), and natural ventilation (NV-UA). The results of the 
IL-UA, HS-UA, and NV-UA are reported in terms of 
yearly EC distribution (Fig. 5a) and monthly EC (plume 
graph in Fig. 5b). A comparison between calculated and 
measured monthly EC is also shown in Fig. 5b. It should 
be noted that only occupants related parameter are varied 
in the uncertainty analyses carried out in this study since 
other uncertainty parameters (e.g., building envelope 
features) have been fixed to deterministic values through 
the calibration process (see Tab. 2). This allowed us to 
focus our work on the impact of OB only on numerical 
results.

For each UA, the yearly EC can be considered nor-
mally distributed, characterized by a mean value of 

3. RESULTS AND DISCUSSION

3.1. MODEL CALIBRATION

This section reports the results of the model calibration 
used to increase the reliability of numerical prediction. 
Figure 4 shows a comparison between observed and pre-
dicted EC after BEM calibration, while the calibrated 
values of the model inputs are reported in Table 2. 

The automated calibration tool allowed for reach-
ing a good match between experimental and numeri-
cal data. Overall, the obtained CVRMSE and NMBE 
values are equal to 13.57 and -3.56%, respectively, 
i.e., lower than the thresholds set in the international 
Standard to consider a BEM calibrated (equal to 15 and 
±5%, respectively, according to the ASHRAE guideline 
14 [23]). The obtained model can then be used for reli-

Fig. 4. Comparison between predicted and observed EC for space 
heating after BEM calibration.

Tab. 2. Calibrated values for the pre-retrofit scenarios.
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3.3. COMPARISON BETWEEN PRE AND 
POST-RENOVATION SCENARIOS

In order to evaluate how the impact of OB on EC may 
vary from a pre-renovation to a post-renovation scenario, 
the same three UAs considered in Section 3.2 have been 
replicated but by considering an improved energy perfor-
mance of the same case study (see Tab. 1). In Figure 6, 
the results of the two scenarios are plotted and compared 
in terms of box plots of yearly energy consumption. 

The first evident results regard the expected reduc-
tion of the yearly building EC for all the considered 
UA, which pass from an average of about 4300 kWh in 
the pre-renovation scenario to about 2800 kWh in the 
post-renovation, corresponding to a decrease in EC of 
about 35%. The standard deviation values of the three 
EC samples are equal to 187.0, 168.5, and 154.0 kWh for 
HS-UA, IL-UA, and NV-UA, respectively, correspond-
ing to a CoV equal to 6.6, 6.0, and 5.5%. These values 
are higher than that obtained in the pre-renovation sce-
narios. The increase obtained in terms of CoV is mainly 
due to the lower average value of yearly EC, but they 
differ among different UAs. In particular, the highest in-
crease is obtained for the NV (+67%), followed by the IL 
and HS (+36% and +20%, respectively). This indicates 

about 4300 kWh. Some differences can be noted in 
terms of standard deviation, equal to 236.5, 189.2, and 
141.9 kWh, for HS-UA, IL-UA, and NV-UA, respective-
ly, corresponding to a CoV, equal to 5.5, 4.4, and 3.3%. 
Thence, in the pre-renovation scenario, the HS schedule 
uncertainty has the highest impact on the EC, followed 
by IL and NV uncertainties. 

Considering the lower variability assigned to the HS 
pattern (CoV = 2.5%) compared to that assigned to the 
IL and NV ones (CoV = 20%), the larger CoV of EC pre-
diction obtained in the HS-UA denotes a high impact of 
the HS pattern on EC. Conversely, the lower CoVs of EC 
obtained for IL-UA and NV-UA indicate the lower im-
portance of IL and NV patterns. These results are similar 
to those obtained in other works. In [7], for example, the 
author obtained a higher impact of HS pattern uncertain-
ty than that obtained for ILs for office buildings. Howev-
er, it should be noted that comparing the results among 
different studies is not an easy task due to the differences 
that can be found in building characteristics, type of use, 
OB patterns, and location. This notwithstanding, it can 
be stated that a correct characterization of the HS pro-
file can be considered fundamental for obtaining realistic 
predictions of EC in existing buildings with low energy 
performance.

Fig. 5. (a) Yearly and (b) monthly EC for the three UAs in the pre-renovation scenario.
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of EC, denoting the high importance of the HS pattern 
uncertainty, regardless of the energy performance of the 
building. Conversely, the high uncertainty of the IL and 
NV patterns, and the obtained low variation on EC, de-
note a low impact of IL and NV uncertainties on EC, es-
pecially for the pre-renovation scenario. However, when 
the energy performance of the building is increased, the 
importance of IL and NV uncertainties in simulations in-
creases accordingly. Thus, the uncertainty in IL and NV 
should be accurately considered in high-energy perfor-
mance buildings.

The main limitation of this work lies in the use of a 
local UA approach. Thence, further studies are needed to 
evaluate the overall EC probability distribution by vary-
ing all the occupants’ patterns. Moreover, more climatic 
locations and building use/type scenarios should be con-
sidered to draw more general conclusions.
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